

Welcome to Superdesk Publisher documentation

The next-generation publishing platform for newsrooms

Superdesk Publisher is a lightweight open source renderer for news articles and other content delivered via an API feed. The code is released under the GNU Affero General Public Licence, version 3 [https://github.com/superdesk/web-publisher/blob/master/LICENSE.md].

Publisher is designed to work with the Superdesk [https://www.superdesk.org/] newsroom management system from Sourcefabric [https://www.sourcefabric.org/], but it can also be adapted to work with any compatible API. Publisher is a lightweight PHP 7 renderer for HTTP-pushed content in both HTML/CSS/JavaScript and PWA templates, and it runs on a standard web server or in a Docker container. A PostgreSQL database is also required.

[image: example image]

The presentation of articles is taken care of by a flexible, device-responsive themes system, which can be customised to suit your publications.

This documentation includes text and code examples from the Symfony and Sylius projects, released under the Creative Commons BY-SA 3.0 [http://creativecommons.org/licenses/by-sa/3.0/] licence. Pull requests to improve the documentation [http://superdesk-publisher.readthedocs.io/en/latest/contributing/documentation/index.html] are welcome.

	Manual
	Introduction
	Why choose Publisher?

	What is Publisher’s focus?

	How is Publisher structured?

	Notable features

	Website architecture

	Getting started
	Installing Superdesk Publisher

	How to Install and Configure Superdesk Publisher with Superdesk

	Configuring Publisher

	Managing websites and routes

	Navigation management

	Configure image formats

	Templates System
	Rendering pages with Twig

	Creating a page templates

	Creating custom templates

	Properties

	Templates features

	Handling Articles

	Handling Related Articles

	Handling Article Media

	Handling Article Authors

	Handling Article Slideshows

	Handling Routes

	Handling Content List Items

	Keywords

	Template Caching

	How to implement Search using ElasticSearch?

	Tips

	Templates inheritance

	How to change the Route/Article template name?

	Themes
	About themes and multitenancy

	Create or install a theme

	Work with theme assets

	Translations

	AMP HTML Integration

	Theme Settings

	Example themes

	Editorial tools
	Content Lists

	Admin Interface
	Publisher Settings

	Publisher dashboard

	Cookbooks
	Templates Cookbooks
	Users registration and login

	Create new route with extension (example: feed/sitemap.rss)

	Create new custom route

	Most popular (read) articles list

	Elements generated on theme installation

	Technical Cookbooks
	Installing Composer

	Updating database schema after customizing model’s mapping

	Meta Loaders

	Content Lists

	Article Preview

	Rules

	Usage

	WebSocket Communication

	Paywall

	GeoIP

	Editors Cookbooks
	Facebook Instant Articles Integration

	Implementators Cookbooks
	Secure content push to Publisher

	[Migration] Redirect articles from previous url’s to publisher

	Setup Wordpress as a Publisher Output Channel

	Setup oAuth login with auth0.com

	Reference
	System Requirements

	Twig Extensions
	Functions

	Bundles
	Fixtures Bundle
	Overview

	How to use fixtures

	Creating a simple PHP fixture class

	Creating a simple Alice fixture (YAML format)

	Loading all fixtures

	Setting up a demo theme

	MultiTenancyBundle
	1. Prerequisites

	2. Installation

	3. Services

	4. PHPCR ODM Repository Initializer

	5. Repositories

	6. SQL Query Filters

	7. Event Listeners

	8. Console Commands

	9. Twig Extension

	10. Configuration Reference

	11. Tutorials

	StorageBundle
	1. Prerequisites

	2. Installation

	3. Usage

	BridgeBundle
	1. Prerequisites

	2. Installation

	3. Usage

	ContentBundle
	1. Usage

	RuleBundle
	1. Prerequisites

	2. Installation

	3. Usage

	4. Models

	5. Configuration Reference

	ContentListBundle
	1. Prerequisites

	2. Installation

	3. Usage

	4. Models

	5. Configuration Reference

	FacebookInstantArticlesBundle
	Authentication

	Article Parsing

	SettingsBundle
	Installation

	Settings definitions

	Usage

	Scope context

	WebhookBundle
	1. Installation

	2. Usage

	OutputChannelBundle
	1. Installation

	2. Usage

	Paywall Bundle
	1. Installation

	2. Usage

	SeoBundle
	1. Installation

	Developer Guide
	Contributing

	Components
	How to Install and Use the Components

	The MultiTenancy Component

	The Storage Component

	The Bridge Component

	The Templates System Component

	The Rule Component

	The Content List Component

	The Output Channel Component

	The Paywall Component

	The SEO Component

	(Un)publishing content
	How published content is marked in database?

	How to Publish content?

	How to check (in code) if content is published?

	How to Un-publish Content?

	Publisher API
	API authentication

Contributing to Web Publisher

	Code

	Bugs

	Patches

	Reviewing Issues and Patches

	Security

	Tests

	Coding Standards

	Code Conventions

	Git

	License

	Documentation

	Overview

	Format

	Documentation Standards

	License

	Community

	Community Reviews

	Other Resources

Manual

Superdesk Publisher: 360° digital output on an industrial scale

Publisher is the latest tool made for the Superdesk newsroom suite. It publishes multimedia content across multiple outputs, from websites to apps to outdoor displays to social media, and allows simultaneous, centralised monitoring and management of all of your assets.

[image: example image]

Publisher is designed to complement Superdesk, which already powers content creation, production, distribution and curation at media businesses such as global news agencies and print/online newspapers. Superdesk is a structured-data polyglot and converses in formats as diverse as the legacy ANPA 1312 all the way to media-rich NewsML G2. But Publisher can also be extended to handle content created in third-party systems, even in exotic, custom formats.

We encourage any media outfit dealing with multiple outputs, platforms and channels to investigate the power of Publisher. Whether you author and produce content in Superdesk or not, Publisher gives you the real-time multi-tenancy overview you need to ensure that it performs optimally, everywhere.

	Introduction
	Why choose Publisher?

	What is Publisher’s focus?

	How is Publisher structured?

	Notable features

	Website architecture

	Getting started
	Installing Superdesk Publisher

	How to Install and Configure Superdesk Publisher with Superdesk

	Configuring Publisher

	Managing websites and routes

	Navigation management

	Configure image formats

	Templates System
	Rendering pages with Twig

	Creating a page templates

	Creating custom templates

	Properties

	Templates features

	Handling Articles

	Handling Related Articles

	Handling Article Media

	Handling Article Authors

	Handling Article Slideshows

	Handling Routes

	Handling Content List Items

	Keywords

	Template Caching

	How to implement Search using ElasticSearch?

	Tips

	Templates inheritance

	How to change the Route/Article template name?

	Themes
	About themes and multitenancy

	Create or install a theme

	Work with theme assets

	Translations

	AMP HTML Integration

	Theme Settings

	Example themes

	Editorial tools
	Content Lists

	Admin Interface
	Publisher Settings

	Publisher dashboard

Introduction

Why choose Publisher?

If your organisation already creates and produces content in Superdesk, Publisher is built to work with it natively. If you are not using Superdesk, but your back-end system or systems are still fit for purpose and your need is to manage a portfolio of digital assets (from multiple websites to apps to social feeds), Superdesk Publisher can be integrated with your legacy tools until their deprecation and replacement.

What is Publisher’s focus?

	Efficient content delivery to multiple digital channels.

	Rapid development of new website and digital layouts, independently from back-end systems to avoid disrupting editorial workflows.

	All the latest embeds and custom widgets for your web pages.

	Full commercial support from the upstream development and implementation teams.

How is Publisher structured?

This graphic shows how Publisher is configured.

[image: Publisher Architecture]

	Data: Symfony uses Postgres and Doctrine.

	Basic frameworks: Publisher is based on Symfony and the Symfony CMF.

	Publisher: The rest is Publisher

Notable features

	Multitenancy

	Built-in support for reverse proxy caching (Varnish, Nginx, internal system as a fallback)

	Twig or PWA theme support

Website architecture

A basic Twig theme must have the following structure:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	ExampleTheme/ <=== Theme starts here
 views/ <=== Views directory
 article.html.twig
 base.html.twig
 category.html.twig
 home.html.twig
 translations/ <=== Translations directory
 messages.en.xlf
 messages.de.xlf
 public/ <=== Assets directory
 css/
 js/
 images/
 theme.json <=== Theme configuration

More on themes in chapter Themes

Getting started

The Superdesk Publisher themes system is built on fast, flexible and easy-to-use Twig templates.

	Installing Superdesk Publisher
	Installing Publisher Prerequisites

	Installing Publisher

	Next Steps

	How to Install and Configure Superdesk Publisher with Superdesk
	Install the Superdesk Publisher Component in Superdesk

	Update Your Superdesk Configuration File

	Update Your Publisher Configuration File

	Configure Subscriber to Publish Content from Superdesk to Superdesk Publisher

	Configuring Publisher

	Managing websites and routes

	Navigation management

	Configure image formats

Installing Superdesk Publisher

This guide describes how to install Superdesk Publisher (refered to as Publisher) on an Ubuntu 18.04 server using Nginx web server.
This guide was verified as accurate and tested using Superdesk Publisher 2.0.3.

Installing Publisher Prerequisites

See the Publisher Requirements [https://github.com/superdesk/web-publisher#requirements] to read more about specific requirements.

Before starting, make sure your Ubuntu server has the latest packages available by running the commands:

	1
2
3

	sudo apt update

sudo apt upgrade

Install PHP-FPM 7.3 and Extensions

Add the ondrej/php repository, which has the PHP 7.3 package and required extensions:

	1
2
3
4
5

	#!/bin/bash

sudo apt install software-properties-common
sudo add-apt-repository ppa:ondrej/php
sudo apt update

Install PHP 7.3 and required extensions:

	1

	sudo apt-get install -y php7.3-fpm php7.3-pgsql php7.3-gd php7.3-xml php7.3-intl php7.3-zip php7.3-mbstring php7.3-curl php7.3-bcmath

Configure PHP-FPM 7.3 by running the command:

	1
2
3

	cd /etc/php/7.3/fpm/pool.d/ &&
sudo curl -s -O https://gist.githubusercontent.com/takeit/2ee16ee50878eeab01a7ca11b69dec10/raw/e9eda2801ac3657495374fcb846c2ff101a3e070/www.conf &&
sudo service php7.3-fpm restart

Install PostgreSQL

Install PostgreSQL:

	1

	sudo apt-get install postgresql postgresql-contrib -y

The default PostgreSQL user is postgres with no password set.

Install Memcached

Install Memcached:

	1

	sudo apt-get install -y memcached

Install the Memcached PHP extension:

	1

	sudo apt-get install -y php7.3-memcached

Install ElasticSearch

ElasticSearch v5.6 will be used. Run the following command to install ES:

	1
2
3
4

	curl -L -O https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-5.6.0.deb &&
sudo dpkg -i elasticsearch-5.6.0.deb && sudo apt-get -y update &&
sudo apt-get -y install --no-install-recommends openjdk-8-jre-headless &&
sudo systemctl enable elasticsearch && sudo systemctl restart elasticsearch

The ElasticSearch should be running on port 9200. You can run the following command to verify this:

	1

	curl -s "http://localhost:9200"

If you get no response in the console after running that command, use this command to check
for error messages:

	1

	systemctl status elasticsearch

Install and Configure Nginx Server

Install Nginx:

	1

	sudo apt-get -y install nginx

Configure Nginx site-enabled by editing the file /etc/nginx/sites-enabled/default. Paste in the following
configuration:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	server {
 server_name example.com
 listen 80 default;
 root /var/www/publisher/public;

 location / {
 try_files $uri /index.php$is_args$args;
 }

 location ~ ^/index\.php(/|$) {
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_split_path_info ^(.+\.php)(/.*)$;
 include fastcgi_params;

 fastcgi_param SCRIPT_FILENAME $realpath_root$fastcgi_script_name;
 fastcgi_param DOCUMENT_ROOT $realpath_root;

 internal;
 }

 location ~ \.php$ {
 return 404;
 }

 error_log /var/log/nginx/project_error.log;
 access_log /var/log/nginx/project_access.log;
}

Restart the Nginx service:

	1

	sudo service nginx restart

Install RabbitMQ Server

Install RabbitMQ:

	1

	sudo apt install -y rabbitmq-server

Install the AMQP PHP extension:

	1

	sudo apt-get install -y php7.3-amqp

Install Supervisor

Install Supervisor:

	1

	sudo apt-get install -y supervisor

Installing Publisher

Clone the source code from the Publisher repository on GitHub, then install dependencies and
configure the Publisher server.

Clone the Publisher Repository

The default directory where the Publisher source code will be downloaded can be /var/www/publisher and all console commands
need to be executed inside that directory starting from now on.

Run the clone command in your terminal:

	1

	cd /var/www/ && sudo git clone https://github.com/superdesk/web-publisher.git publisher && cd publisher

All commands must be run in the /var/www/publisher directory from now on.

Install Publisher Dependencies

Install Composer:

	1

	sudo apt-get install composer -y

Install Publisher’s dependencies (which can be found in composer.json) using the following command:

	1

	composer install

Create and Populate the Database

Create a new terminal session and log into the postgres user:

	1

	su - postgres

Create a new user ‘root’ as a superuser to match Publisher’s default database connection configuration:

	1

	createuser -s -d root

Next, find the location of PostgreSQL’s pg_hba.conf file:

	1

	psql -t -P format=unaligned -c 'show hba_file';

In this guide we are using version 10 of PostgreSQL, so our pg_hba.conf is located at
/etc/postgresql/10/main/pg_hba.conf. Edit this file and change the local connections authentication method
from peer or md5 to trust.

Danger

Changing this setting to trust will allow anyone, even remote, to be able to log into the database as any
user without authentication. You will learn how to secure PostgreSQL in Configure and secure your Publisher server [http://superdesk-publisher.readthedocs.io/en/latest/manual/getting_started/publisher-configuration.html].

 How to Install and Configure Superdesk Publisher with Superdesk

How to Install and Configure Superdesk Publisher with Superdesk

This guide describes the functions of Superdesk Publisher and Superdesk, along with the required steps to run both applications concurrently in a production environment on two different servers.
(However, both applications can also work on a single machine.)

This guide assumes that you have:

	A working instance of Superdesk

	A working instance of Superdesk Publisher

For this guide, we will assume your Superdesk server runs on superdesk.example.com and your Publisher server
runs on example.com.

Install the Superdesk Publisher Component in Superdesk

Login to the server where Superdesk is installed.

Superdesk Publisher Component is a JavaScript component that is a separate dependency
and can be included in Superdesk to manage your Superdesk Publisher application.

To add this component as a dependency edit /opt/superdesk/client/package.json and include the
Superdesk Publisher repository:

	1
2
3
4

	"dependencies": {
 ,
 "superdesk-publisher": "superdesk/superdesk-publisher#2.0"
}

You can replace master with whichever branch you require.

Next, run the following command to install the package.json dependencies:

	1

	npm install

Update Your Superdesk Configuration File

Inside /opt/superdesk/client directory on your server open the superdesk.config.js
and integrate the following code with your existing configuration:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	apps: [
 ,
 'superdesk-publisher'
],
importApps: [
 ,
 'superdesk-publisher'
]
publisher: {
 protocol: 'http', /* http or https */
 tenant: '', /* tenant - semantically subdomain, '' is allowed */
 domain: 'example.com', /* domain name for the publisher */
 base: 'api/v2', /* api base path */

 wsProtocol: 'wss', /* ws or wss (websocket); if unspecified or '' defaults to 'wss' */
 wsDomain: 'WebSocketDomain.com', /* domain name (usually domain as above) */
 /* e.g.: example.com, abc.example.com */
 /* tenant, as above, is NOT used for websocket */
 wsPath: '/ws', /* path to websocket root dir */
 wsPort: '8080' /* if not specified: defaults to 443 for wss, 80 for ws */
},

Finally, rebuild the front-end by running this command:

	1

	grunt build

Update Your Publisher Configuration File

Login to the server where Publisher is installed.

Edit (or create, if it doesn’t already exist) the file /var/www/publisher/.env.local and add the following:

	1
2

	SUPERDESK_SERVERS='["superdesk.example.com"]'
CORS_ALLOW_ORIGIN=http://superdesk.example.com

Note

For CORS_ALLOW_ORIGIN, it is important to include the protocol your Superdesk server uses (http or https) and
to not have a trailing slash after your domain name (e.g. your value should not be http://superdesk.example.com/).

 Configuring Publisher

Configuring Publisher

Publisher integrates into Superdesk simply by adding new option Publisher Settings to its main left-hand sidebar navigation.

[image: Publisher Settings option]
This option, when chosen, opens Publisher configuration which allows configuring one or more websites.
Setting a website actually means defining routes, creating navigation menus (whose menu items are linked to these routes),
and creating content lists.

Detailed explanation of website management steps can be found in chapter Admin interface

 Managing websites and routes

Managing websites and routes

When Publisher is installed, it is integrated into Superdesk and expects output channels (or, in other words - websites) to be set - as already mentioned in Configuring Publisher.

The main concepts are:

	there can be more than one website that you can configure and feed from Superdesk

	each website is configured firstly by its routes; routes can be of type collection, content and custom.

[image: Collection route]
Route of type collection is expected to get articles attached to it - think of it as a kind of category page (Business, or Politics, or simply News). When configuring this route, you need to also specify an article template name - the one that will be used to show articles attached to that route.

[image: Content route]
Route of type content is the destination - it holds the content! Either only one article is attached to it, or no articles at all! So it can be either a static article page (About us), or a special template (contact form, confirmation page, or simply a route that doesn’t directly hold attached articles, like ‘home’ route for example, or Trending articles, which would use a special template to show that kind of content).

[image: Custom route]
Routes of type custom are dynamically generated and thus have more technical aspect in essence. They are used to define, for example, author profile routes - /author/john-smith, /author/sarrah-staffwriter etc. The first part is static (‘author’), while the second part is dynamic and based on an author slug in this case. Written in json format, a custom route definition looks like this:

Here a theme developer would needs to get the author slug value from the context and construct the url dynamically using it.

 Navigation management

Navigation management

Navigations are menus that you can use on your websites. The advantage of creating them here (and not building the navigation menu only in the theme) is that they can later be managed via the Superdesk Publisher interface (meaning menu items added, removed and reordered) even by website editors, and not just theme developers.

[image: Navigation management]
Only after configuring Routes, we can proceed to configure Navigation. That’s because navigation is built on menu items, and menu items are partly defined by routes.

[image: Menu item type]
However, it doesn’t have to be the case, as menu items can also have custom URIs. But as SEO algorithms sort-of penalize navigations with external links, it should be used wisely (ie. to make a link to a specific custom route).

[image: Navigation management]
The elements needed for menu item definition are:

	Name

	Label - the value that is shown on the front end for that menu item in the navigation menu

	Parent - useful when building nested, drop-down menus

	Route - one of previously defined routes

	Uri - automatically filled in when route is selected

 Configure image formats

Configure image formats

In Superdesk Settings -> Vocabularies -> Image Crop sizes it is possible to define all needed image sizes.

[image: Image crop sizes]
If you are configuring one website, depending on the layout design it can require one image size for lead story on front, another one for second-level stories, thumbnail image for small teasers, big article page image, and finally image size optimized for Facebook sharing for example.

So all these sizes should be crops of originally uploaded image that journalist or editor are adding to the story as feature image (one that represents the story in teasers).

If you have more websites powered by one Superdesk instance, then all of the needed crops are defined here.

[image: Edit image crop sizes]
Even though original image gets cropped automatically, this process can be overviewed and best point of interest and area of interest are customizable.

[image: Edit image crops]

 Templates System

Templates System

The Superdesk Publisher templates system has its own git repository, at: https://github.com/SuperdeskWebPublisher/templates-system

	Rendering pages with Twig

	Creating a page templates

	Creating custom templates
	Setting error pages from theme

	Testing error pages during theme development

	Properties

	Templates features
	Custom Twig tags
	gimme

	gimmelist

	How to work with gimmelist pagination?

	How to work with Meta objects

	Stringy twig extensions

	Redirects
	redirect

	notFound

	Handling Articles
	Listing Articles

	Fetching first article url (when it’s changed after slug or route change)

	Handling Related Articles
	Listing a collection of Related Articles

	Handling Article Media
	Listing Article Media
	Article Media

	Image Renditions

	Feature Media

	Handling Article Authors
	Listing a Single Article’s Author

	Listing a collection of Article’s Authors

	Handling Article Slideshows
	Listing a Single Article’s Slideshow

	Listing a collection of Article’s Slideshows

	Listing all Article’s Slideshows Items

	Listing all Article’s Slideshows and its Items

	Listing a Single Slideshow and its Items by Name

	Handling Routes
	Listing a Single Route

	Listing a Routes Collection

	Handling Content List Items
	Listing Content List Items
	Content List

	Content List Items

	Keywords
	List a Single Keyword

	Template Caching
	Strategies

	Content list blocks caching

	How to implement Search using ElasticSearch?
	Create a new Route

	Create a template file

	Available search criteria:

	Tips

Templates inheritance

Default template name for route and articles in Publisher is article.html.twig.

Inheritance overview:

	1
2
3

	> article.html.twig
 > Route custom template
 > Article custom template

If route is collection type then it can have declared two default templates:

	default_template used for rendering Route content (eg. /sport).

	default_articles_template used for rendering content attached to this route (eg. /sport/usain-bolt-fastest-man-in-theo-world).

Note

When route default_template property is set but not default_articles_template, then Web Publisher will load all articles attached to this route with template chosen in default_template (not with article.html.twig).

 Rendering pages with Twig

Rendering pages with Twig

Superdesk Publisher uses Twig templating engine [http://twig.sensiolabs.org] to render website HTML. Twig is modern, flexible, extensible and secure templating system, and has great documentation [http://twig.sensiolabs.org/documentation], as well as active support community at Stack Overflow [https://stackoverflow.com/].

This is how Twig code looks like:

	1
2
3
4
5

	{% for user in users %}
* {{ user.name }}
{% else %}
 No users have been found.
{% endfor %}

If you are creating completely new theme for your Publisher project, or going to modify some of the existing demo themes, you can follow this handy guide.

Generally, if starting from scratch, we advise you to develop your HTML/CSS/JS first with some dummy content, and once it’s ready, you can proceed with translating this markup into twig templates.

We have developed three demo themes which can serve as a refference for quick start (more about it here)

	Superdesk Publisher demo theme, located at /src/SWP/Bundle/FixturesBundle/Resources/themes/DefaultTheme inside your Publisher instance (this theme is distributed as part of Publisher package)

	The Modern Times theme, whose Git repo is here: https://github.com/SuperdeskWebPublisher/theme-dailyNews [https://github.com/SuperdeskWebPublisher/theme-dailyNews/]

	Magazine theme, whose Git repo is here: https://github.com/SuperdeskWebPublisher/theme-magazine [https://github.com/SuperdeskWebPublisher/theme-magazine/]

 Creating a page templates

Creating a page templates

Page template can render content in a straight-forward way: take article delivered to Publisher from Superdesk (or from any other source) and put its elements in markup of your choice (article title in <h1>, wrap main body in block-level element, etc).

 Creating custom templates

Creating custom templates

Setting error pages from theme

Publisher provides simple default templates for error pages. You can find them in app/Resources/TwigBundle/views/Exception/ directory.

To override these templates from theme you need to create TwigBundle/views/Exception/ directory in your theme, and put there new error pages files.

Example Structure:

	1
2
3
4
5
6
7
8

	ThemeName/
└─ TwigBundle/
 └─ views/
 └─ Exception/
 ├─ error404.html.twig
 ├─ error403.html.twig
 ├─ error500.html.twig
 ├─ error.html.twig # All other HTML errors

Testing error pages during theme development

You can use URLs like

	1
2
3
4

	http://wepublisher.dev/app_dev.php/_error/404
http://wepublisher.dev/app_dev.php/_error/403
http://wepublisher.dev/app_dev.php/_error/500
http://wepublisher.dev/app_dev.php/_error/501 # error.html.twig will be loaded

to preview the error page for a given status code as HTML.

 Properties

Properties

 Templates features

Templates features

Custom Twig tags

Gimme allows you to fetch the Meta object you need in any place of your template. It supports single Meta objects (with gimme) and collections of Meta objects (with gimmelist).

gimme

The tag gimme has one required parameter and one optional parameter:

	(required) Meta object type (and name of variable available inside block), for example: article

	(optional) Keword with and parameters for Meta Loader, for example: { param: "value" }

	1
2
3
4

	{% gimme article %}
 {# article Meta will be available under "article" variable inside block #}
 {{ article.title }}
{% endgimme %}

Meta Loaders sometimes require special parameters - like the article number, language of the article, user id, etc..

	1
2
3
4

	{% gimme article with { articleNumber: 1 } %}
 {# Meta Loader will use provided parameters to load article Meta #}
 {{ article.title }}
{% endgimme %}

gimmelist

The gimmelist tag has two required parameters and two optional parameters:

	(required) Name of variable available inside block: article

	(required) Keyword from and type of requested Metas in collection: from articles with filters passed to Meta Loader as extra parameters (start, limit, order)

	(optional) Keyword with and parameters for Meta Loader, for example: with {foo: 'bar', param1: 'value1'}

	(optional) Keyword without and parameters for Meta Loader, for example: without {source: 'AAP'}

	(optional) Keyword if and expression used for results filtering

	(optional) Keyword ignoreContext and optional array of selected meta to be ignored

Example of the required parameters:

	1
2
3

	{% gimmelist article from articles %}
 {{ article.title }}
{% endgimmelist %}

Example with ignoring selected context parameters:

	1
2

	{% gimmelist article from articles ignoreContext ['route', 'article'] %}
...

Example with ignoring whole context

	1
2

	{% gimmelist article from articles ignoreContext [] %}
...

Or even without empty array

	1
2

	{% gimmelist article from articles ignoreContext %}
...

Example with filtering articles by metadata:

	1
2
3

	{% gimmelist article from articles with {metadata: {byline: "Karen Ruhiger", located: "Sydney"}} %}
 {{ article.title }}
{% endgimmelist %}

The above example will list all articles by metadata which contain byline equals to Karen Ruhiger AND located equals to Sydney.

To list articles by authors you can also do:

	1
2
3
4

	{% gimmelist article from articles with {author: ["Karen Ruhiger", "Doe"]} %}
 {{ article.title }}
 Author(s): {% for author in article.authors %}{{ author.name }} ({{ author.role }}) {{ author.biography }} - {{ author.jobTitle.name }},{% endfor %}
{% endgimmelist %}

It will then list all articles written by Karen Ruhiger AND Doe.

To list articles from the Forbes source but without an AAP source you can also do:

	1
2
3

	{% gimmelist article from articles with {source: ["Forbes"]} without {source: ["AAP"]} %}
 {% for source in article.sources %} {{ source.name }} {% endfor %}
{% endgimmelist %}

It will then list all articles with source Forbes and without AAP.

Listing article’s custom fields:

	1
2
3
4

	{% gimmelist article from articles %}
 {{ article.title }}
 {{ article.extra['my-custom-field'] }}
{% endgimmelist %}

Example with usage of all parameters:

	1
2
3
4
5
6
7

	{% gimmelist article from articles|start(0)|limit(10)|order('id', 'desc')
 with {foo: 'bar', param1: 'value1'}
 contextIgnore ['route', 'article']
 if article.title == "New Article 1"
%}
 {{ article.title }}
{% endgimmelist %}

How to work with gimmelist pagination?

gimmelist is based on Twig for tag, like in Twig there is loop [http://twig.sensiolabs.org/doc/tags/for.html#the-loop-variable] variable available.
In addition to default loop properties there is also totalLength. It’s filled by loader with number of total elements in storage which are matching criteria. Thanks to this addition we can build real pagination.

TemplateEngine Bundle provides simple default pagination template file: pagination.html.twig.

Note

You can override that template with SWPTemplatesSystemBundle/views/pagination.html.twig file in Your theme. Or You can use own file used for pagination rendering.

 Handling Articles

Handling Articles

Listing Articles

Publisher have concept of Meta Loaders - one of built in loaders covers articles.

The articles loader parameters:

	(optional) key route - id or name or array of id’s used for loading meta (if omitted then current route is used).

	1
2
3

	{% gimmelist article from articles %} <!-- It will use route from context -->

{% endgimmelist %}

	1
2
3

	{% gimmelist article from articles with {'route': 1} %} <!-- route id -->

{% endgimmelist %}

	1
2
3

	{% gimmelist article from articles with {'route': '/news'} %} <!-- route staticPrefix -->

{% endgimmelist %}

	1
2
3

	{% gimmelist article from articles with {'route': ['/news', '/sport/*']} %} <!-- route staticPrefix -->

{% endgimmelist %}

Note

'/sport/*' syntax will load articles from main route ('/sport') and all of it 1st level children (eg. '/sport/football').

 Handling Related Articles

Handling Related Articles

Listing a collection of Related Articles

Usage:

	1
2
3
4
5
6
7
8

	
{% gimmelist relatedArticle from relatedArticles with { article: gimme.article }} %}
 {{ relatedArticle.article.title }} <!-- Related article's title -->
 Link <!-- Related article's URL -->
 {{ relatedArticle.createdAt|date('Y-m-d') }} <!-- Related article's creation date -->
 {{ relatedArticle.updatedAt|date('Y-m-d') }} <!-- Related article's update date -->
{% endgimmelist %}

The above twig code, will render the list of related articles by given article in with parameters.

The {{ relatedArticle.article }} object is an article object.

Specifying article parameter is optional. By default the article from context will be loaded.

 Handling Article Media

Handling Article Media

Listing Article Media

Publisher have concept of Meta Loaders - one of built in loaders covers article media.

Article Media

The articleMedia loader have one optional parameter:

	(optional) key article - article Meta instance used for loading meta (if omitted then one available in context is used).

Simple usage:

	1
2
3

	{% gimmelist media from articleMedia %} <!-- It will use article from context -->

{% endgimmelist %}

With optional parameter:

	1
2
3

	{% gimmelist media from articleMedia with {'article': gimme.article} %}

{% endgimmelist %}

Note

Media Meta is handled by default by url and uri functions. It will return url for original image or file.

 Handling Article Authors

Handling Article Authors

Listing a Single Article’s Author

Usage:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	
{% gimme author with { id: 1 } %}
 {{ author.name }} <!-- Author's name -->
 {{ author.role }} <!-- Author's name -->
 {{ author.biography }} <!-- Author's biography -->
 {{ author.jobTitle.name }} <!-- Author's job title name -->
 {{ author.jobTitle.qcode }} <!-- Author's job title code -->
 {% if author.avatar %} {% endif %} <!-- Author's avatar url. Check first if it's not null - author can be without avatar. -->
 {{ author.facebook }} <!-- Author's Facebook -->
 {{ author.instagram }} <!-- Author's Instagram -->
 {{ author.twitter }} <!-- Author's Twitter -->
{% endgimme %}

Parameters:

	1

	{% gimme author with { id: 1 } %} {{ author.name }} {% endgimmelist %} - select author by it's id.

	1

	{% gimme author with { name: "Tom" } %} {{ author.name }} {% endgimmelist %} - select author by it's name.

Listing a collection of Article’s Authors

Usage:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	
{% gimmelist author from authors with { role: ["writer"] } without {role: ["subeditor"]} %}
 {{ author.name }} <!-- Author's name -->
 {{ author.role }} <!-- Author's role -->
 {{ author.biography }} <!-- Author's biography -->
 {{ author.jobTitle.name }} <!-- Author's job title name -->
 {{ author.jobTitle.qcode }} <!-- Author's job title code -->
 {% if author.avatar %} {% endif %} <!-- Author's avatar url. Check first if it's not null - author can be without avatar. -->
 {{ author.facebook }} <!-- Author's Facebook -->
 {{ author.instagram }} <!-- Author's Instagram -->
 {{ author.twitter }} <!-- Author's Twitter -->
{% endgimmelist %}

The above twig code, will render the list of articles where author’s role is writer and is not subeditor.

Filter authors by author’s name:

	1
2
3

	{% gimmelist author from authors with { name: ["Tom"] } %}
 {{ author.name }}
{% endgimmelist %}

Filter authors by author’s slug (automatically created from name. Example: John Doe -> john-doe):

	1
2
3

	{% gimmelist author from authors with { slug: ["john-doe"] } %}
 {{ author.name }}
{% endgimmelist %}

Filter authors by author’s name and role:

	1
2
3

	{% gimmelist author from authors with { role: ["Writer"], name: ["Tom"] } %}
 {{ author.name }}
{% endgimmelist %}

Filter authors by job title:

	1
2
3
4
5
6
7

	{% gimmelist author from authors with {jobtitle: {name: "quality check"}} %}
 {{ author.name }}
{% endgimmelist %}

{% gimmelist author from authors with {jobtitle: {qcode: "123"}} %}
 {{ author.name }}
{% endgimmelist %}

 Handling Article Slideshows

Handling Article Slideshows

Listing a Single Article’s Slideshow

Usage:

	1
2
3
4
5

	{% gimme slideshow with { name: "slideshow1" } %}
 {{ slideshow.code }} <!-- Slideshow's code -->
 {{ slideshow.createdAt|date('Y-m-d hh:mm') }} <!-- Slideshow's created at datetime -->
 {{ slideshow.updatedAt|date('Y-m-d hh:mm') }} <!-- Slideshow's updated at datetime-->
{% endgimme %}

or

	1
2
3
4
5

	{% gimme slideshow with { name: "slideshow1", article: gimme.article } %}
 {{ slideshow.code }} <!-- Slideshow's code -->
 {{ slideshow.createdAt|date('Y-m-d hh:mm') }} <!-- Slideshow's created at datetime -->
 {{ slideshow.updatedAt|date('Y-m-d hh:mm') }} <!-- Slideshow's updated at datetime-->
{% endgimme %}

Parameters:

	1

	{% gimme slideshow with { name: "slideshow1", article: gimme.article } %} {{ slideshow.code }} {% endgimme %} - select slideshow by it's code/name and current article.

If the article parameter is not provided, the slideshow will be loaded for the current article that is set in the context.

Listing a collection of Article’s Slideshows

Usage:

	1
2
3
4
5

	{% gimmelist slideshow from slideshows with { article: gimme.article } %}
 {{ slideshow.code }} <!-- Slideshow's code -->
 {{ slideshow.createdAt|date('Y-m-d hh:mm') }} <!-- Slideshow's created at datetime -->
 {{ slideshow.updatedAt|date('Y-m-d hh:mm') }} <!-- Slideshow's updated at datetime-->
{% endgimmelist %}

The above twig code will render the list of articles slideshows for the current article set in context.

Listing all Article’s Slideshows Items

Usage:

	1
2
3
4
5

	{% gimmelist slideshowItem from slideshowItems with { article: gimme.article } %}
 {% gimme rendition with {'media': slideshowItem.articleMedia, 'name': '770x515', 'fallback': 'original' } %}

 {% endgimme %}
{% endgimmelist %}

The above twig code will render the list of articles slideshows for the current article set in context.

Or if there are audio, video, image files in slideshow:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	{% gimmelist slideshow from slideshows with { article: gimme.article } %}
 <h2>{{ slideshow.code }}</h2>
 {% gimmelist slideshowItem from slideshowItems with { article: gimme.article, slideshow: slideshow } %}

 {% if slideshowItem.articleMedia.mimetype starts with 'image' %}
 {% gimme rendition with {'media': slideshowItem.articleMedia, 'name': '770x515', 'fallback': 'original' } %}

 {% endgimme %}
 {% elseif slideshowItem.articleMedia.mimetype starts with 'audio' %}
 <audio src="{{ url(slideshowItem.articleMedia) }}" controls>
 Download song
 </audio>
 {% elseif slideshowItem.articleMedia.mimetype starts with 'video' %}
 <video src="{{ url(slideshowItem.articleMedia) }}" controls>
 Download video
 </video>
 {% endif %}

 {% endgimmelist %}
{% endgimmelist %}

Listing all Article’s Slideshows and its Items

Usage:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	{% gimmelist slideshow from slideshows with { article: gimme.article } %}
 {{ slideshow.code }} <!-- Slideshow's code -->
 <!-- Slideshow items -->
 {% gimmelist slideshowItem from slideshowItems with { article: gimme.article, slideshow: slideshow } %}
 {% gimme rendition with {'media': slideshowItem.articleMedia, 'name': '770x515', 'fallback': 'original' } %}

 {% endgimme %}
 {% endgimmelist %}
 {{ slideshow.createdAt|date('Y-m-d hh:mm') }} <!-- Slideshow's created at datetime -->
 {{ slideshow.updatedAt|date('Y-m-d hh:mm') }} <!-- Slideshow's updated at datetime-->
{% endgimmelist %}

The article parameter in gimmelist is optional. If not provided, it will load slideshows for current article.

Listing a Single Slideshow and its Items by Name

Usage:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	{% gimmelist slideshow from slideshows with { article: gimme.article, name: "slideshow1" } %}
 {{ slideshow.code }} <!-- Slideshow's code -->
 <!-- Slideshow items -->
 {% gimmelist slideshowItem from slideshowItems with { article: gimme.article, slideshow: slideshow } %}
 {% gimme rendition with {'media': slideshowItem.articleMedia, 'name': '770x515', 'fallback': 'original' } %}

 {% endgimme %}
 {% endgimmelist %}
 {{ slideshow.createdAt|date('Y-m-d hh:mm') }} <!-- Slideshow's created at datetime -->
 {{ slideshow.updatedAt|date('Y-m-d hh:mm') }} <!-- Slideshow's updated at datetime-->
{% endgimmelist %}

The article parameter in gimmelist is optional. If not provided, it will load slideshows for current article.

 Handling Routes

Handling Routes

Listing a Single Route

Usage:

	1
2
3
4
5
6
7

	
{% gimme route with { parent: 5, slug: 'test-route', name: 'Test Route'} %}
 {{ route.name }} <!-- Route's name -->
 {{ route.slug }} <!-- Route's slug -->
 {{ url(route) }} <!-- Route's url -->
{% endgimme %}

	parent - an id of parent route

	slug - route’s slug

	name - route’s name

Listing a Routes Collection

Usage:

	1
2
3
4
5

	
{% gimmelist route from routes %}
 {{ route.name }}
{% endgimme %}

	1
2
3
4
5

	
{% gimmelist route from routes with {parent: 5} %} <!-- possible values for parent: (int) 5, (string) 'Test Route', (meta) gimme.route -->
 {{ route.name }}
{% endgimmelist %}

 Handling Content List Items

Handling Content List Items

Listing Content List Items

Note

Content List can store many different content types (articles, events, packages).

 Keywords

Keywords

List a Single Keyword

Usage:

	1
2
3
4
5
6

	
{% gimme keyword with { slug: 'big-city' } %}
 {{ keyword.name }} <!-- Keyword's name -->
 {{ keyword.slug }} <!-- Keyword's slug -->
{% endgimme %}

 Template Caching

Template Caching

For now we support just template block caching with the cache block.

The Cache block is simple, and accepts only two parameters: cache key and strategy object (with strategy key and value).

Note

Cache blocks can be nested:

	1
2
3
4
5
6
7

	{% cache 'v1' {time: 900} %}
 {% for item in items %}
 {% cache 'v1' {gen: item} %}
 {# ... #}
 {% endcache %}
 {% endfor %}
{% endcache %}

The annotation can also be an expression:

	1
2
3
4

	{% set version = 42 %}
{% cache 'hello_v' ~ version {time: 300} %}
 Hello {{ name }}!
{% endcache %}

 How to implement Search using ElasticSearch?

How to implement Search using ElasticSearch?

To make use of features (e.g. full-text search) provided by ElasticSearch and it’s extension/plugin ElasticSearchBundle created specifically for Superdesk Publisher, you need to do the following steps.

Create a new Route

You can create a new route using admin interface as described in Create new route with extension (example: feed/sitemap.rss) section. In this example the created route under which we will place search will be named: search.

Create a template file

Example search template which loads search and its results when filtered by criteria:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	# ../view/search.html.twig
<form name="filter" method="get">
 <input type="search" id="filter_search" name="q">
</form>

{% set itemsPerPage, currentPage = 8, app.request.get('page', 1) %}
{% set start = ((currentPage - 1) * itemsPerPage) %}

{% gimmelist article from searchResults|limit(app.request.get('limit', 10))|order(app.request.get('field', 'publishedAt'), app.request.get('direction', 'desc')) with {
 term: app.request.get('q', ''),
 page: app.request.get('page', 1),
 routes: app.request.get('route', []),
 term: app.request.get('q', ''),
 publishedBefore: app.request.get('publishedBefore'),
 publishedAfter: app.request.get('publishedAfter'),
 publishedAt: app.request.get('publishedAt'),
 sources: app.request.get('source', []),
 authors: app.request.get('author', []),
 statuses: app.request.get('status', []),
 metadata: app.request.get('metadata', []),
 keywords: app.request.get('keywords', []),
} %}
 <h4>{{ article.title }}</h4>
 <p>{{ article.lead }}</p>

{% if loop.last %}
 {% include '_tpl/pagination.html.twig' with {
 currentFilters: {}|merge(app.request.query.all()),
 currentPage: currentPage,
 paginationPath: gimme.route,
 lastPage: (loop.totalLength/itemsPerPage)|round(0, 'ceil')
 } only %}

 Showing {{ searchResults|length }} out of {{ loop.totalLength }} articles.
{% endif %}
{% endgimmelist %}

Business
Politics

Alternatively, to built-in order function, you can also use sort: app.request.get('sort', []), parameter to sort by different fields and directions which needs to be passed directly to the with statement.

Available search criteria:

Based on the above template.

	Criteria name

	Description

	Example

	Format

	sort

	Sorting

	sort[publishedAt]=desc

	sort[<field>]=<direction>

	page

	Pagination

	page=1

	page=<page_number>

	limit

	Items per page

	limit=10

	limit=<limit>

	routes

	An array of routes ids

	route[]=10&route[]=12

	route[]=<routeId>&route[]=<routeId>

	q

	Search query

	q=Lorem ipsum

	q=<search_term>

	publishedBefore

	Published before date time

	publishedBefore=1996-10-15T00:00:00

	publishedBefore=<datetime>

	publishedAfter

	Published before date time

	publishedBefore=1996-10-15T00:00:00

	publishedAfter=<datetime>

	sources

	Sources of articles

	source[]=APP&source[]=NTB

	source[]=<source>&source[]=<source>

	authors

	An array of authors

	author[]=Joe&author[]=Doe

	author[]=<auth1>&author[]=<auth2>

	statuses

	An array of statues

	status[]=new&status[]=published

	status[]=new&status[]=published

	metadata

	An array metadata

	metadata[located]=Sydney

	metadata[<field>]=<value>

	keywords

	An array of keywords

	keywords[]=Joe&keywords[]=Doe

	keywords[]=<key1>&keywords[]=<key2>

 Tips

Tips

 Themes

Themes

	About themes and multitenancy
	Twig - Publisher’s default theme system

	Progressive Web App (PWA) Themes

	Create or install a theme

	Work with theme assets
	Load assets from the theme’s public directory (app/themes/<theme-name>/public)

	Load assets from the public web directory

	Generate simple links for current theme assets

	Load Service Worker files (from domain root level)

	Load bundles’ assets

	Override bundles’ assets from the theme

	Translations

	AMP HTML Integration
	How to create AMP HTML theme?

	Where to upload AMP HTML theme?

	Linking AMP page and non-AMP page

	Theme Settings
	How to display the current theme settings in templates?

	How to work with theme settings in the GUI

	How to display current theme’s settings using an API?

	How to update current theme settings using an API?

	How to restore current theme settings using an API?

	Example themes
	Superdesk Publisher demo theme

	The Modern Times theme

	Magazine theme

	PWA theme

 About themes and multitenancy

About themes and multitenancy

Themes provide templates for the customization of the appearance and functionality of your public-facing websites. Themes can also be translated to support multiple written languages and regional dialects.

There are two Superdesk Web Publisher themes systems; default one is built on top of fast, flexible and easy to use Twig [http://twig.sensiolabs.org/] templates. Alternativelly, PWA [https://web.dev/progressive-web-apps/] Next.js (React/Node.js) Superdesk Publisher renderer can be used.

Twig - Publisher’s default theme system

By default, themes are located under the app/themes directory. A basic theme must have the following structure:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	ExampleTheme/ <=== Theme starts here
 views/ <=== Views directory
 home.html.twig
 translations/ <=== Translations directory
 messages.en.xlf
 messages.de.xlf
 screenshots/ <=== Theme screenshots
 front.jpg
 public/ <=== Assets directory
 css/
 js/
 images/
 theme.json <=== Theme configuration

Publisher does not support the option of Sylius theme structure [http://docs.sylius.org/en/latest/bundles/SyliusThemeBundle/your_first_theme.html#theme-structure] to have bundle resources nested inside a theme.

Progressive Web App (PWA) Themes

PWA theme, on the other hand, is built as Hybrid app - one React app on both server and client side. It is built on modern and highly optimised code which ensures lightning fast performance.

Our PWA solution is Server Side Generated (SSG, not SSR - server side rendered) and Client Side Rendered (CSR, React) - on build, app renders pages to HTML and JSON. It refreshes these files during runtime on defined schedule. The end users ALWAYS get a static file - either HTML (on initial load) or JSON (when navigating between pages), with data needed to render given page on client side.

Beside standard front - section - article page functionality, and tag - author - search pages, default Publisher’s PWA theme also includes:

	Responsiveness - fits any form factor: desktop, mobile, tablet, or whatever is next. It makes a project available to more people on more devices with wildly varying operating systems, browser capabilities, system APIs, and screen sizes. It ensures that websites work on any device that can access the web, regardless of a browser.

	app-like experiences which users enjoy using. Also, it allow users to add the app to their home screen. With the option to install websites, users are offered the ability to install PWA and easily access it on their home screens without the hassle of an app store.

	integration of Web Vitals recording into Google Analytics (that way one gets real data from users about page speed and other measurements that can be then visualised in Analytics using custom dashboard [https://analytics.google.com/analytics/web/template?uid=H4hQiuJlTvKuzvajY86Fsw/] or online app [https://web-vitals-report.web.app/]. (More about web vitals [https://web.dev/vitals/])

	Publisher Analytics: app reports views back to publisher endpoint

	Static/Dynamic sitemaps and sitemap-news 0.9

	Installable as an app on mobiles and even on desktop Chrome

	Possibility of offline usage, thanks to service workers and manifest.json

	AMP support out of the box

	Re-engagement - PWAs feature Push Notifications is used for promotions and specials, as those updates can be displayed to the users even if they don’t have the PWA installed or a browser tab open to the website.

	Sentry integration

	User Login/Register

	
	
	

Superdesk Publisher can serve many websites from one instance, and each website tenant can have multiple themes. The active theme for the tenant can be selected with a local settings file, or by API.

If only one tenant is used, which is the default, the theme should be placed under the app/themes/default directory, (e.g. app/themes/default/ExampleTheme).

If there were another tenant configured, for example client1, the files for one of this tenant’s themes could be placed under the app/themes/client1/ExampleTheme directory.

	
	
	

Superdesk Publisher’s default theme system Twig provides an easy way to create device-specific templates. This means you only need to put the elements in a particular template which are going to be used on the target device.

The supported device types are: desktop, phone, tablet, plain.

A theme with device-specific templates could be structured like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	ExampleTheme/ <=== Theme starts here
 phone <=== Views used on phones
 views/ <=== Views directory
 home.html.twig
 tablet <=== Views used on tablets
 views/ <=== Views directory
 home.html.twig
 views/ <=== Default templates directory
 home.html.twig
 translations/ <=== Translations directory
 messages.en.xlf
 messages.de.xlf
 screenshots/ <=== Theme screenshots
 front.jpg
 public/ <=== Assets directory
 css/
 js/
 images/
 theme.json <=== Theme configuration

Note

If a device is not recognized by the Publisher, it will fall back to the desktop type. If there is no desktop directory with the required template file, the locator will try to load the template from the root level views directory.

More details about theme structure and configuration can be found in the Sylius Theme Bundle documentation [http://docs.sylius.org/en/latest/bundles/SyliusThemeBundle/your_first_theme.html].

 Create or install a theme

Create or install a theme

To install theme assets you need to run swp:theme:install command.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	The swp:theme:install command installs your custom theme for given tenant:

 bin/console swp:theme:install <tenant> <theme_dir>

You need specify the directory (theme_dir) argument to install
theme from any directory:

 bin/console swp:theme:install <tenant> /dir/to/theme

Once executed, it will create directory app/themes/<tenant>
where <tenant> is the tenant code you typed in the first argument.

To force an action, you need to add an option: --force:

 bin/console swp:theme:install <tenant> <theme_dir> --force

To activate this theme in tenant, you need to add and option --activate:
 bin/console swp:theme:install <tenant> <theme_dir> --activate

If option --processGeneratedData will be passed theme installator will
generate declared in theme config elements like: routes, articles, menus and content lists

 Work with theme assets

Work with theme assets

To install theme assets you need to run sylius:theme:assets:install command.

Theme assets (JavaScript, CSS etc. files) should be placed inside the theme directory. There are few ways of reading
theme assets in your Twig templates. The below how-to describes where to place the assets, how to install it and use it.

Load assets from the theme’s public directory (app/themes/<theme-name>/public)

	Put the example.css asset file inside <theme-name>/public/css/ directory.

	Install assets by running command: php bin/console sylius:theme:assets:install.

	Make use of the asset file in twig templates:

	1
2

	<!-- loads test.css file directly /public/css/ in theme directory -->
<link rel="stylesheet" href="{{ asset('theme/css/example.css') }}" />

Load assets from the public web directory

	Put the example.css asset file directly inside web directory.

	Make use of the asset file in twig templates:

	1
2

	<!-- loads asset file directly from `web` dir (`web/example.css`) -->
<link rel="stylesheet" href="{{ asset('example.css') }}" />

Generate simple links for current theme assets

If You need to get link to asset from outside of twig template then you can use this url:

	1
2
3

	/public/{filePath}

ex. <link rel="stylesheet" href="/public/css/example.css" />

Where {filePath} is path for your file from public directory inside theme.

Load Service Worker files (from domain root level)

If You want to use service worker or manifest file (it must be placed in root level) then you can use this url:

	1
2
3

	/{fileName}.{fileExtension}

ex. <link rel="manifest" href="/manifest.json">

Where {fileName} can be only sw or manifest.

Load bundles’ assets

	Install Symfony assets by running command: php bin/console assets:install.

	Make use of the asset file in twig templates:

	1
2

	<!-- loads bundle's asset file from bundles dir -->
<link rel="stylesheet" href="{{ asset('bundles/framework/css/body.css') }}" />

Override bundles’ assets from the theme

There is a possibility to override bundle specific assets. For example, you have AcmeDemoBundle registered in your project.
Let’s assume there is a body.css file placed inside this bundle (Resources/public/css/body.css).
To override body.css file from your theme, you need to place your new body.css file inside app/themes/<theme-name>/AcmeDemoBundle/public directory:

	Put the body.css asset file inside app/themes/<theme-name>/AcmeDemoBundle/public directory.

	Install assets by running command: php bin/console sylius:theme:assets:install.

	Make use of the asset file in twig templates:

	1

	<link rel="stylesheet" href="{{ asset('theme/acmedemo/css/body.css') }}" />

Note

theme prefix in {{ asset('theme/css/example.css') }} indicates that the asset refers to current theme.

 Translations

Translations

The Symfony Translation component supports a variety of file formats for translation files, but in accordance with best practices suggested in the Symfony documentation [https://symfony.com/doc/current/best_practices/i18n.html], the XLIFF file format is preferred.
JMSTranslationBundle [http://jmsyst.com/bundles/JMSTranslationBundle] has been added to the project to facilitate the creation and updating of such files.

The use of abstract keys such as index.welcome.title is preferred, with an accompanying description desc in English to inform a translator what needs to be translated.
This description could simply be the English text which is to be displayed, but additional information about context could be provided to help a translator.

Abstract keys are used for two main reasons:

	Translation messages are mostly written by developers, and changes might be necessitated later. These changes would then result in changes for all supported languages instead of only for the source language, and some translations might be lost in the process.

	Some words in English are spelled differently in other languages, depending on their meaning, so providing context is important.

Here is an example of the preferred syntax in twig templates:

	1

	{{ 'index.welcome.title'|trans|desc('Welcome to Default Theme!') }}

Translation labels added to Twig and php files can be extracted and added to XLIFF files using a console command [http://jmsyst.com/bundles/JMSTranslationBundle/master/usage] bin/console translation:extract.
This command can be used to create or update a XLIFF file in the locale en for the DefaultTheme of the FixturesBundle:

	1

	bin/console translation:extract en --dir=./src/SWP/Bundle/FixturesBundle/Resources/themes/DefaultTheme/ --output-dir=./src/SWP/Bundle/FixturesBundle/Resources/themes/DefaultTheme/translations

This will create or update a XLIFF file in English called messages.en.xlf, which can be used with a translation tool.

 AMP HTML Integration

AMP HTML Integration

Google AMP HTML [https://www.ampproject.org/] integration comes with Superdesk Publisher out of the box.
This integration gives you a lot of features provided by Google. To name a few: fast loading time and accessibility via Google engines etc. There is no need to install any dependencies, all you need to do is to create AMP HTML compatible theme or use the default one [https://github.com/superdesk/web-publisher/tree/master/src/SWP/Bundle/FixturesBundle/Resources/themes/DefaultTheme/amp/amp-theme] provided by us.

Default AMP HTML theme is bundled in our main Demo Theme and can be installed using php bin/console swp:theme:install command.

You could also copy it to your own main theme and adju